Sweat The Small Stuff

Let’s talk about science! Literally, here I am talking about science, the quantum world, scientists, and answering audience questions from a kindly bunch at Pint of Science this May in Dublin. There is also a bit of a surprise in the middle.

Flatland and Extra Dimensions

What would life be like if you lived in two dimensions instead of three?

Back when I posted about popular science books for non-scientists, one of the suggestions I got after the fact was Flatland: A Romance of Many Dimensions, the 19th century classic by Edwin A. Abbott. Which is absolutely worth reading, and a great example of what I love in science writing (or science fiction): an idea that makes you change your whole perspective on the world and reimagine it from a different point of view.

The idea behind Flatland is this: what would it be like if the world we inhabited were flat instead of 3D? You can imagine it as living within a piece of paper, or on the surface of a table. The notion of up and down would be meaningless; we’d only have left and right, and front and back. So we’d be moving in two dimensions rather than three, and we’d also perceive everything around us to have only two dimensions. There wouldn’t be any going over a fence, or peeking under a door. If a thing blocked your way, it would block it completely, and everything behind it would be completely invisible. Of course, you wouldn’t be able to pass through things in Flatland, the same way you can’t in the real world. So if a person stopped directly in front of you, you’d have to pass to either side, or not at all.

There’s a lot of social commentary in Flatland as well, satire aimed at Victorian England that comments on gender divisions, class hierarchies, and dogmatism against new ideas. It’s worth a full read for that, though its examination of spatial dimensions is what’s kept it famous.

Life in Flatland may seem like an academic abstraction. But actually, while our world is three-dimensional, there are some things in it which effectively have only two dimensions, especially in the world of nanoscience. The touted wonder material graphene is effectively two-dimensional, because in the third dimension it’s only one atom thick. That means that electrons moving through graphene are effectively in a two-dimensional environment, a Flatland, and can’t use the third dimension to go around each other. More two-dimensional materials are being discovered every day, and taking one dimension of a material to the nanoscale while leaving the others large changes the physical laws in that material significantly!

And what if there were more dimensions to the world? What if instead of three dimensions to space, there were a fourth, or a fifth? In that case, life here in three dimensions would seem like Flatland, without the fourth dimension to move through. Some physicists studying string theory think there may in fact be additional spatial dimensions, but that they must be curled up within the three we know in order to be undetectable.

So the idea of Flatland, a world where there are only two dimensions instead of the usual three, isn’t just a science fiction classic, it’s also a valuable thought experiment that ties into both nanoscience and string theory!

The Water Cycle and The Future

I’ve always loved water. My favourite sport is swimming, because of how it feels to have water holding you up. And when I was young, any time it rained I’d run outside and just walk for ages in the rain: I loved the smell and the cool of it. Admittedly, rain was a rarity in my childhood, since I grew up in New Mexico in the US, which is all mountains and desert. I can see why here in Ireland, where rain is so much more common, you see fewer people rushing to the streets each time it rains. But in my desert home, one of the things I found fascinating is that water has a story, a history just like us, it has somewhere it came from and somewhere it’s going. When we see the rain fall, it’s evaporated from the ground, from lakes, from the sea. And that same rain will be absorbed by the ground and stay in it before rising again, or freezing into ice caps, or melting and flowing again to the sea. Here in Ireland, the clouds come in off the ocean, so the water in our rain is evaporated sea water.

We can think of the water on the world like the water in our own bodies. We can run and get sweaty, and the water on our skin evaporates away. We can drink in water, filling our insides the same way that aquifers under the surface of the earth are filled with water. And then we can release that water given time, the same way that solid land loses some of its water to the seas. But because the earth is so big, it also has weather on its surface, clouds and rainfall, and as far as I know I’ve never sweated enough to make it rain.

But how quickly water moves through this cycle depends on the weather, the same way it does for our bodies. You sweat more when it’s hot and humid, like now, and less if it’s cold or dry, right? Well water is affected the same way, by how warm the surface of the earth is. In hot conditions, more water will evaporate off the earth’s surface and off of plants, which can stimulate more weather like rain and thunderstorms… unless it’s very dry! So where I grew up, desert plants have to work really hard to hang onto water, because it’s such a precious resource and the heat and dryness cause it to go away really quickly. Plants here don’t have that issue, as there is plenty of water to go around!

We are changing how the water cycles through our world, though. When people build dams, cut down forests, pasture animals, build cities, or burn fuel for energy, that changes where water can flow and how long it stays in the air. All of our activities affect the flow of water through the sky, the sea, and the earth.

In fact, greenhouse gases from our human civilization are causing the atmosphere to trap more heat from the sun, so that our planet is gradually warming up. It’s a slow process, taking decades for the world’s temperature to rise even a degree on average, but it’s been going on for awhile now. So even though we are trying to switch to solar power away from things like coal power, our planet will keep warming up. Sea levels will go up, and we’ll have warmer summers and rainier winters. Here in Ireland, it might be nice, as long as you don’t live right on the sea. But in New Mexico, it’s already difficult to grow food and stay cool during the summer, so the extra heat might make it very hard for people to live there. But the important thing about the future is understanding it so you can plan accordingly… for example, by moving to Ireland!

Myths about the Brain

My least favorite brain myth was always the one about the left brain being logical and the right brain being creative. But there are quite a few debunked in this great video:


The Fermi Paradox

The Fermi Paradox

For a great example of science communication (and some fascinating thought puzzles) take a look at Wait But Why’s The Fermi Paradox, which addresses the question: where is all the other intelligent life out there?

(NSFW language in the article)


Scientists don’t need to wear a white lab coat to talk about science

Scientists don’t need to wear a white lab coat to talk about science

I had a scientist request a bunch of lab gear to take into a classroom just this week (that they don’t normally use in their job). It can be fun playing dress-up, certainly, but it’s interesting to think about the repercussions of having such an authoritative uniform on public perception

How to get researchers involved in public engagement

A researcher at my institution has written a blog for the Wellcome Trust about the public engagement event we ran from February-May 2014: Magnificent Microbes. 

Hints on best practice include:

  1. Ask questions! Children can get distracted quite easily so the best way to keep their attention is to ask them what they know. This will also prevent you from telling them things that they know already.
  2. Make your activities as hands-on as possible – really enable your audience to get involved.
  3. Think about your target audience; can you present the exhibit to both young children and adults? How will you tailor what you say to suit them?
  4. Make your exhibit relevant. There is no better way to engage your audience, particularly children, than to make them realise how your research affects them personally. For instance, we use the formation of plaque on your teeth as an example of how biofilms are medically important. This allows us to engage with children by asking them how often they brush their teeth and why they think it’s necessary.
  5. Calculate the quantities of consumables you will need. It doesn’t do any harm to overestimate slightly, but be prepared to be flexible with what you have. In our case we ended up having to ask families to share particular props, as we ran short towards the end of the event.
  6. Don’t over simplify the exhibit to accommodate children. I was really pleasantly surprised at just how much the kids took away from what we told them.