Author Archives: Jessamyn Fairfield

The Water Cycle and The Future

I’ve always loved water. My favourite sport is swimming, because of how it feels to have water holding you up. And when I was young, any time it rained I’d run outside and just walk for ages in the rain: I loved the smell and the cool of it. Admittedly, rain was a rarity in my childhood, since I grew up in New Mexico in the US, which is all mountains and desert. I can see why here in Ireland, where rain is so much more common, you see fewer people rushing to the streets each time it rains. But in my desert home, one of the things I found fascinating is that water has a story, a history just like us, it has somewhere it came from and somewhere it’s going. When we see the rain fall, it’s evaporated from the ground, from lakes, from the sea. And that same rain will be absorbed by the ground and stay in it before rising again, or freezing into ice caps, or melting and flowing again to the sea. Here in Ireland, the clouds come in off the ocean, so the water in our rain is evaporated sea water.

We can think of the water on the world like the water in our own bodies. We can run and get sweaty, and the water on our skin evaporates away. We can drink in water, filling our insides the same way that aquifers under the surface of the earth are filled with water. And then we can release that water given time, the same way that solid land loses some of its water to the seas. But because the earth is so big, it also has weather on its surface, clouds and rainfall, and as far as I know I’ve never sweated enough to make it rain.

But how quickly water moves through this cycle depends on the weather, the same way it does for our bodies. You sweat more when it’s hot and humid, like now, and less if it’s cold or dry, right? Well water is affected the same way, by how warm the surface of the earth is. In hot conditions, more water will evaporate off the earth’s surface and off of plants, which can stimulate more weather like rain and thunderstorms… unless it’s very dry! So where I grew up, desert plants have to work really hard to hang onto water, because it’s such a precious resource and the heat and dryness cause it to go away really quickly. Plants here don’t have that issue, as there is plenty of water to go around!

We are changing how the water cycles through our world, though. When people build dams, cut down forests, pasture animals, build cities, or burn fuel for energy, that changes where water can flow and how long it stays in the air. All of our activities affect the flow of water through the sky, the sea, and the earth.

In fact, greenhouse gases from our human civilization are causing the atmosphere to trap more heat from the sun, so that our planet is gradually warming up. It’s a slow process, taking decades for the world’s temperature to rise even a degree on average, but it’s been going on for awhile now. So even though we are trying to switch to solar power away from things like coal power, our planet will keep warming up. Sea levels will go up, and we’ll have warmer summers and rainier winters. Here in Ireland, it might be nice, as long as you don’t live right on the sea. But in New Mexico, it’s already difficult to grow food and stay cool during the summer, so the extra heat might make it very hard for people to live there. But the important thing about the future is understanding it so you can plan accordingly… for example, by moving to Ireland!

Myths about the Brain

My least favorite brain myth was always the one about the left brain being logical and the right brain being creative. But there are quite a few debunked in this great video:

Reynolds’ World

What’s it like for little things like bacteria to move around? How do they swim from place to place?

We know that swimming feels different from walking. Part of it is the feeling of being suspended, where instead of the firm solidity of the earth and the  insubstantial give of air, we have the water on all sides, supporting not just our feet but our legs, arms, and body. But also, it’s a lot harder to move through water! The same quality that makes us feel supported also impedes movement, so that even a very efficient swimmer will be easily outpaced by someone strolling along on dry land.

Scientists have a way to quantify that  difference, using a measure called the Reynolds number. The Reynolds number compares how strong inertial forces are in a fluid, which come from the particle size and the weight of the particles, with the viscosity of the fluid. If a fluid has low inertial forces compared to its viscosity, it has a low Reynolds number, and if it has high viscosity compared to its inertial forces, then its Reynolds number is low. So fluids with a high Reynolds number are easier to move through, and fluids with a low Reynolds number are harder to move through. The pitch of the Trinity pitch drop would have a very low Reynolds number! And fluid flow in high Reynolds number environments tends to have more chaos, vortices and eddies that can arise because of how easy it is to move light things that don’t stick together, like molecules of air.

So it turns out that what strategy you use to move in a low Reynolds number environment is different from what you’d use in a high Reynolds number environment. Of course, we already know that, because if we try to walk or run in water, it doesn’t work very well! Running is a great way to get around when you are moving through thin air with the solid ground beneath you, but humans have developed various modes of swimming for water, that take advantage of our anatomy and account for the different nature of water.

But remember, we are largely made up of water! So what about our moving cells and bacteria, which have to get around in a low Reynolds number environment all the time? And keep in mind that our cells are very small, subject to molecular forces and a lot closer to the size of water molecules than we are. Not surprisingly, there are different forms of swimming that take place in our cells. One of the most common is using a rotating propeller, a little like the blade on a helicopter, to move forward. These structures are called flagella and are common on the surface of various types of cells, to use rotary motion as a way of easily moving through the high Reynolds number environment.

So the next time you are walking around with ease, take a moment to imagine how different it is for everything moving from place to place in and around your cells. It is a whole different world, right inside our own!

Quantum Worldview

I have always loved the kind of science fiction where you think about a world that is largely like our own, but in some fundamental way different. What if we all lived underwater, or if the force of gravity was lower, or if the sun were a weaker star? To me, that’s what the world of quantum physics is like: in a lot of ways it’s similar to our own world, in fact it’s the basis of our world! But it’s also crazy and strange. So what would it be like if we were quantum creatures, if we could actually see how everything around us is quantized?

Well first, there’s what it means to be quantum. A quantum of anything is a piece that can’t be subdivided any further, the smallest possible unit. But this implies a sort of graininess, where rather than a continuous stream of, say, light, we start to see at the small scale that light is actually composed of little chunks, quanta of light. Imagine being able to see how everything around you is made of discrete pieces, from light to sound to matter. When the sun came up, you’d see it getting lighter in jumps. When you turn up your music, you’d hear each step of higher volume. And as your hair grew, you’d see it lengthening in little blips.

And at the quantum scale, the wave nature of everything becomes indisputably clear. We normally think of waves as something that emerges from a lot of individual objects acting together, like the water molecules in the sea, or people in a crowd. But if you look at quanta, you actually find that those indivisible packets of light or sound or matter are also waves, waves in different fields of reality. That’s hard to get your head around, but think of it this way: as a quantum wave, if you passed right by a corner, you could actually bend around the back of it a little the way that ripples going around a rock in water do. Things like electrons and photons of light actually do this, so for example the pattern below is made by light going through a circular hole, and the wave diffraction is clearly visible.

Amazingly, as a wave, you could actually have a slight overlap with the person next to you. This gets at something that’s key to quantumness: the probabilistic nature of it. Say I thought you were nearby, and I wanted to measure your position somehow to see how close you were to me. I’d need to get a quantum of something else to interact with you, but because it would be a similar size to you, it would slightly change your position, or your speed. We don’t notice the recoil when sound waves bounce off us in the macroscale world, but if we were very small we would! So there is actually a built in uncertainty when dealing with quantum objects, but we can say there’s a probability that they are in one place or another. So as a quantum creature, you can think of yourself as a little wave of probability, that collapses to a point when measured but then expands out again after. When I’m not measuring you, where are you really? Well I can’t say physically, and this is why you can have a little wave overlap with your neighbour without violating the principle that you can’t both be in the same place at the same time.

And imagine that you’re next to a wall. As a wave you may have a little overlap of probability with that wall. And if the wall is thin enough, as a quantum object there is actually some chance that you’ll pass through the wall entirely! This is called quantum tunnelling, and actually it’s happening all the time in the electronics inside your phone. Modern microelectronics work in part because we can use effects from the quantum world in our own, larger world!

It’s difficult to imagine a world where everything happens in discrete chunks, where I can see myself as a wave, where I don’t know where I am until someone else interacts with me. But this is the world at the quantum scale, and it’s not science fiction!

Top Ten Popular Science Books

I recently got a request to recommend some popular science books that don’t assume any scientific knowledge on the part of the reader. I was surprised at how hard it was to think of books, because to be honest, most pop science books do seem to assume that you have some fluency in science ideas or jargon, if at a lesser level than a scientist would. I’ve read some very popular books about biological topics that I found dry or hard to get through, because even though I’m a scientist I don’t know very much biology. But I came up with the following ten books, which explore different aspects of science in strongly accessible ways:

These books will give a nice overview of some of the great stuff that’s out there in popular science reading. (Note: the links above are affiliate links, just something we’re trying out!) Of course, I’m always interested in other people’s recommendations too, so have at it in comments if you like!

A Chat About Women In Science

What do Erin and I talk about behind the scenes of this very blog? Well, plenty, but often we discuss science communication and women in science. We decided to post this recent chat we had, with references! This is how the sausage is made, people.

 

Jessamyn:  !!!
YES
Erin:  I question whether the overarcing discussion is still so humanities-unfriendly (given the proliferation of things like Bright Club over here), but he’s got a lot of good points
I also think it’s worth thinking about why the humanities’ contributions have been overlooked
mainly because I think they are viewed as ‘lesser’ by a lot of scientists
which is kind of ironic given the way the tide has turned
Jessamyn:  yeah
I think that putting science up on a pedestal has both isolated it and decreased its perceived value
and being all shirty about the social sciences and how they have ‘physics envy’
Erin:  which is ridiculous!
we should be able to appreciate the value of other areas of study and hopefully see how they can benefit our own
Jessamyn:  being interdisciplinary and collaborative have huge payoffs
but they aren’t ego payoffs
Erin:  absolutely
but I don’t think scientists feel like they are being egotistical
Jessamyn:  they may not label it as that
but they are imposing a moral value system that conveniently places their work at the top
and then building a hierarchy of status based on that
Erin:  oh! how funny it ended up like that
Jessamyn:  sorry guys it just HAPPENS that my stuff is the most important EVER
Erin:  as defined be ME AND ALL MY BUDDIES
Jessamyn:  not everyone is smart enough to do what I do, sadly
so I have to tell you what’s important and what’s not
ME
I AM IMPORTANT
Erin:  sadly the current environment of academia does not help dispel that. PIs and researchers are constantly being driven to justify their work
and it’s only very recently that outreach and collaboration have had any place in that justification
Jessamyn:  yeah
I love doing all this stuff but I’m very aware that it’s not going to do much to help me get a faculty position
research publications do that
I think some departments are more into outreach than others, and I’m hoping one of those will place a higher value on someone like me… but it’s not a universally valued thing the way research pubs are
Erin:  I was talking to a PhD student today who is great, she is part of the bioscience team and is also spearheading a college-wide blog initiative. and the comments from her colleagues have just been so dismissive. “Oh, you’re good at talking to people? you should quit your position and go into publishing or communications.”
Jessamyn:  yes!
after I won that physics communication award people asked me if I wanted to take the outreach coordinator’s job
and I’m like, no, I want to do research and some outreach, and I want her job to be coordinating lots of scientists like me
and I think most scientists should be doing this stuff
at varying levels, but I mean… COME ON
Erin:  yeah, oh god, don’t get me started
and it’s like “overall that might be a good amount of outreach but my god it’s unfair to the few people who are willing”
even if they enjoy it
because as you said, it doesn’t directly help your career
Jessamyn:  my boss was also commenting to me and a gender equality committee yesterday that it’s generally female scientists who end up being great communicators
which, yes, because (a) I think female scientists are much more aware that they are unlikely to be able to be the single-minded scientist, if only because there is the ‘WHAT ABOUT BABEEEZ’ thing from so early on that men can just skate on past, assuming that a partner will do the bulk of the work
and (b) women are socially conditioned to value communication and language skills more than men are, and more ostracized if they fail to develop those skills, so
Erin:  yeah, I’ve definitely read studies and it goes: men without kids < men with kids < women without kids < women with kids in terms of scientists who engage with outreach efforts
Jessamyn:  makes sense
I mean I guess you could also say, well women in science know about the importance of role models
so they would be more invested in providing that, to get more scientists and more girls into science
but then that ends up being effectively another tax on being a woman in science
Erin:  yeah, especially since they’re also required to sit on all the committees, and be on all the brochures, and the panels, etc etc…
Jessamyn:  exactly
Erin:  :-/
AND WHO IS MORE LIKELY TO END UP IN THE HUMANITIES? (to tie this in to the beginning point)
Jessamyn:  yes!!!
oh I read a great thing about that awhile back
and more of those people are women
I hated the title of this, using storytelling to bring women to science, but it’s very interesting
I like how it challenges the framing that women need better sci/math skills
when it’s also, we just lose those women who go off and pursue other things they are good at
Erin:  yeah!
science needs better women skills!
Jessamyn:  yes!
stop phoning it in, science!

 

What I Talk About When I Talk About Science

For the most part I don’t write that much about science communication here, because my posts on this blog are one demonstration of what I feel science communication can be! But I spent the end of last year thinking a lot about outreach, and seeing how my outreach philosophy is different from other communicators who are doing great work, and I wanted to explain that a little more.

I’ve always found science fascinating as a lens for understanding the world and appreciating its beauty. But I think that in science and engineering, and especially my field of physics, there’s an inherent tension. On the one hand, you have the beauty and awe that science help illuminate, and the excitement of increasing your own realm of knowledge, or even pushing the boundaries of the knowledge of mankind. That is all exciting and lofty and many people who aren’t into science still see the appeal, because curiosity about the world around us is something every child starts out with. But on the other hand, there’s often an elitism in science, a sense of scientists as gatekeepers of truth high up in a hierarchy, which is encouraged by the media at times and even some scientists.

When I tell people I’m a scientist, or a physicist, a lot of times they tell me a story about the one bad physics teacher they had, who ruined all of science for them. This apparently happens a lot, and I do get that teachers can make or break a subject at times. (My first physics teacher was not stellar.) But it’s not like bad English teachers ruin reading and writing for anyone. “If it weren’t for that middle school teacher harping on verb tenses all the time, I would probably be a Proust scholar by now, but as it is I don’t even remember how to read.” But I think culturally, communication and language and the arts derived from those things are considered fundamental, in a way that science and math used to be but no longer are. It should be as much a mark of education to know some basic science as it is to have read some of the classic novels or to know the Beethoven symphonies! I’m never going to be one of those people who makes the argument that science literacy is more important than other forms of cultural literacy, but why isn’t it at least equivalent? I think that’s a direct result of our having tried to set science apart as a better, higher thing. When you put something up on a pedestal, it gains status but loses accessibility. Science is now considered less relevant for everyone to know, even though it’s just as foundational as it ever was.

But I don’t fundamentally believe that scientific ideas are out of reach for a layperson. There’s no insurmountable math barrier or smartness barrier, science is a topic like many other topics. And I mean that a layperson can understand basically any scientific idea, not just the vague and descriptive ones. Math is a great language for explaining science, if you know how to speak it. But actual language also does the trick! You just have to be willing to think about the best way to use it.

Only being willing to explain physics using math is a failure of imagination. And sure, maybe an explanation that doesn’t use math is going to be missing some things, but so is a math explanation that gives no qualitative interpretations. If you have no science background, and I’m telling you about electrons, you may not come to understand electrons in exactly the way that I do. But that’s as much because we are different people with different experiences and conceptual ways of thinking as it is because I have spent time studying physics.

There is a saying that you can’t teach someone physics, you can only help them to learn it for themselves. And while I agree that it’s the student who has to mentally grapple with and eventually accept the tricky topics in science (and life), that doesn’t mean there’s no point trying to teach! Each person comes to understand concepts, whether it’s particle-wave duality or mind-body duality, on their own terms. If someone is asking me to help them find those terms for a concept I know a little about, I can’t make the leaps for them, but I can try different approaches to facilitate that understanding. And I love doing that; it usually expands and reforms my own understanding as well.