The Rainbow of Bonds

Now that we have looked at the broader picture of what a bond is, we can go a little deeper. Bonds can be easy or hard to break, they can involve particle exchange between atoms, they can be the result of transient forces, and they can react in a variety of ways. There is a rainbow of bond types to explore, but we can focus on a few primary examples.

We’ll start with the stronger sort of bonds: those that involve direct transfer of electrons between atoms. For example, say we have two neighboring atoms, one with an empty low-energy state and one with an outer electron that’s all alone at a high-energy state. If the states are similarly shaped, both atoms can lower their overall energy when the extra electron moves to the low-energy state. The atom that gave up the electron is now positively charged, and the atom that accepted the electron is negatively charged, so there is an electrostatic force attracting them. Charged atoms are also called ions, so we say that these two atoms have an ionic bond. And it’s possible to have ionic bonds involving more than one electron, if an atom has two or three electrons to donate which another atom can accept. A common example of ionic bonding is table salt, which has a sodium atom donate an electron to a chlorine atom.

It’s also possible for two atoms to share a pair of electrons, so that the electron cloud overlaps with both atomic nuclei. If the electrons in question have oppositely aligned spins, they can have the same energy without being in the same quantum mechanical state. This is called covalent bonding. It happens most often when the two atoms in question are comparably attractive to electrons, for example if they are the same type of atom. Graphite, or pencil lead, is one form of carbon that has covalent bonds. So is graphene, the atomically thin version of graphite whose discovery (and extraordinary properties) recently garnered a Nobel prize in physics.

Ionic and covalent bonds tie atoms together very tightly, and can be linked together to form complexes with many bonded atoms. These complexes are known as molecules. But large numbers of atoms can also share electrons diffusely, so that the electrons aren’t localized to a single atom or a pair of atoms. This is called metallic bonding, so-called because delocalized electrons are found in metals. The free electrons move around the atomic nuclei like a sea moving around rocks, only weakly bound to them. The mobility that electrons have in metals is why we say that metals have high ‘electrical conductivity’: it is easy to pass an electrical current, which just consists of individual electrons, through a metal. As a special case of metallic bonding, it’s also possible to have partially delocalized electrons in small molecules, which is the basis of organic chemistry.

Another way to weakly bind atoms comes from the fact that charge is separated in an atom, between the positively charged nucleus and the negatively charged electron cloud. Imagine that the cloud is slightly distorted, by a passing electrical field or by a random fluctuation. If the electron cloud is not symmetric around the nucleus at that moment, there will be a distance between the center of the positive charge and the center of the negative charge, and a force because of the opposite charges. This is called a dipole in electromagnetism, because of the two oppositely charged poles. And if you have two next to each other, they will try to align so that the negative side of one dipole is near the positive side of the other. What starts as a small fluctuation can cause a slight reordering over a large material, because of the dipoles attempting to align. This dipole-dipole interaction is another weak form of bonding. It can happen with induced dipoles, as I’ve described, or between permanent dipoles which are common in molecules.

There is also a lone form of chemical bonding which doesn’t rely solely on electrons. The hydrogen atom, with its single proton and single electron, is pretty small and pretty reactive. So it’s actually possible for two atoms to share a third atom, hydrogen, which means that both the electron and the proton are in energy states that minimize the total system energy. The hydrogen bond is partly covalent, since the hydrogen electron is usually paired with a second electron. But the separation of the proton and electron also induces a dipole, making hydrogen bonding a dipole-dipole interaction. Hydrogen bonding may sound like a strange beast, and it is, but it is an important factor in the chemical behavior of water which is essential to life as we know it.


2 responses to “The Rainbow of Bonds

  1. Pingback: Topic Index | letstalkaboutscience

  2. Pingback: Happy Ada Lovelace Day! | letstalkaboutscience

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s