Tag Archives: periodic table of elements

Electrons, Bonding, and the Periodic Table

The structure of the periodic table of elements is a bit weird the first time you see it, like a castle or a cake. If we just read the periodic table top to bottom and left to right, we are reading off the elements in order of increasing number of protons. However, if this were the only useful ordering on the periodic table, it could be a simple list. The vertically aligned groups on the periodic table actually represent the chemical properties of the elements. Dmitri Mendeleev developed the table in 1869 as a way to both tabulate existing empirical results, and predict what unexplored chemical reactions or undiscovered elements might be possible. It was revolutionary as a scientific tool, but the mechanism behind the periodicity was not understood until decades later. As it turns out, the periodicity of chemical behavior corresponds to the bonding type of the outer electrons in different atoms.

To understand what that means, we can start by looking at the elements on the left side of the periodic table. Hydrogen has only one proton, so the electrically neutral form of hydrogen has only one electron. This single electron is a point particle, jumping around the nucleus. The electron exists in a probability cloud, whose shape is given by the lowest energy solution to the quantum mechanical equations describing the system. These quantum states can be distinguished by differing quantum numbers for various quantities like spin and angular momentum, and we will talk about these in more depth later on. When we add additional electrons, they all want to be in the lowest energy state as well. Sadly for electrons but happily for us, no two electrons are able to occupy the same quantum state: they must differ in at least one quantum number. This is known as the Pauli exclusion principle, and was devised to explain experimental results in the early years of quantum mechanics. So while the single electron in hydrogen gets to be in the lowest energy state available for an electron in that atom, in an atom like oxygen, its eight electrons occupy the eight lowest energy states, as if they are stones stacked in a bucket.

But what’s really interesting about these higher energy electron states is that they have different shapes, as we can see by the mathematical forms that describe the possible probability distributions for electrons. So while the electron cloud in a hydrogen atom is a sphere, there are electron clouds for other atoms that are shaped like dumbbells, spheres cut in two, alternating spherical shells, and lots of other shapes.

The electron cloud shape becomes important because two atoms near each other may be able to minimize their overall energy via electron interactions: in some configurations the sharing of one, two, more, or even a partial number of electrons is energetically preferred, whereas in other configurations sharing electrons is not favorable. This electron sharing, which changes the shape of the electron cloud and affects the chemical reactivity of the atoms involved, is what’s called chemical bonding. When atoms are connected by a chemical bond, there is an energy cost necessary to separate them. But how atoms interact depends fundamentally on the shape of the electron cloud, determining when atoms can or can’t bond to each other. So the periodic table, which was originally developed to group atoms with similar chemical properties and bonding behaviors, actually also groups atoms by the number and arrangement of electrons.

Now, there is a lot more that can be said about bonding. You can talk about the inherent spin of electrons, which is important in bonding and atomic orbital filling, or you can talk about the idea of filled electron shells which make some atoms stable and others reactive, or you can talk about the many kinds of chemical bonds. It’s a very deep topic, and this is just the beginning!

Since every real world object is a collection of bonded atoms, the properties of the things we interact with, and what materials are even able to exist in our world, depend on the shape of the electron cloud. Imagine if the Pauli exclusion principle were not true, and all the electrons in an atom could sit together in the lowest energy state. This would make every electron cloud the same shape, which would remove the incredible variety of chemical bonds in our world, homogenizing material properties. Chemistry would be a lot easier to learn but a lot less interesting, and atomic physics would be completely solved. Stars, planets, and life as we know it might not exist at all.

Advertisements