Author Archives: Jessamyn Fairfield

What Is Life? And Other Interdisciplinary Questions

Scientists, like most people, want to understand the world they live in. We examine the physical structure of the world, in the hope that understanding the rules governing it will also lend some clue as to what it all means. Ironically, as the boundaries of scientific knowledge grow, the possibility of any individual scientist grasping this entire meaning gets smaller and smaller. Even within science, the traditional disciplinary boundaries—biology, chemistry, physics—often separate scientists who should really be talking to each other. I have always loved talking to people who know different things than I do, prompted by curiosity and encouraged by family. But it can be rare to see famous scientists doing the same.

Erwin Schrödinger, a physicist famous for his mathematical and philosophical development of quantum mechanics, tried to reach across these boundaries and ask the question that compels so many of us, namely ‘What Is Life?’ His historic lectures were given in 1943, against the backdrop of world war and 75 years behind our current understanding of biology. And in a wise move for anyone trying to understand something new, Schrödinger began by admitting what he didn’t know: to him, the difference between what physics and biology had to say about life was the difference between “a wallpaper and a Raphael tapestry”.

And yet, connecting physical understanding to biology has provided significant insights. When these lectures were given, the DNA molecule itself had already been discovered, but the double helix structure was yet to be found, along with much of our modern understanding of how this blueprint for life works. And yet the stability of the DNA molecule in the cell is directly due to the quantum basis of chemical bonds. Schrödinger expresses amazement that even with the perturbations caused by heat and environment at the molecular level, the naive physicist’s expectation of wild variability is incorrect, and chemical stability holds. While DNA does sometimes mutate in ways that persist through generations, forming the basis of natural selection, its ability to reproduce error free throughout our lives is amazing from a physics perspective. Especially when one considers the consequences of uncontrolled mutation, as the world would see only two years later as radiation-induced mutation caused terrible illness in the survivors of Hiroshima and Nagasaki.

In trying to define life, Schrödinger comes to the idea of order and disorder, and the physicist’s idea of entropy. Although entropy, which is a measure of disorder, is bound to increase over time subject to the Second Law of Thermodynamics, Schrodinger posited that living beings were effectively decreasing their local entropy by exporting it, increasing order within the cell even if the broader environment became less ordered. Cheating the Second Law of Thermodynamics is a necessity for living cells, living beings, and even our planet to maintain local order. Schrodinger then concludes that living beings must be ‘negative entropy machines’, converting energy to local order, a perspective only a physicist could have come up with.

Schrödinger’s willingness to admit what he did not know, and try to combine modern biology and modern physics even during wartime to unify humanity in knowledge, put me in mind of another, less famous, transdisciplinary scientist.

A man pipetting.

My father, Eric Fairfield, was a biochemistry professor who left academia to work on the Human Genome Project. We talked about science a lot, especially once I chose to pursue physics. I know he was proud of me for becoming a scientist, even though as a biochemist he could not resist ribbing me for my limited understanding of biology. When I read Schrodinger’s statement:

THE CLASSICAL PHYSICIST’S EXPECTATION, FAR FROM BEING TRIVIAL, IS WRONG

I could nearly hear it in my dad’s voice. The “naive physicist’s approach” to understand the cell by looking to statistical physics and randomnessi misses the stability of chemical bonds in the DNA molecule and other cellular components. In a messy, changeable environment, the blueprints that make us have persisted through thousands of generations. As my dad used to say, biology had this figured out a long time before we even knew what questions to ask.

But this isn’t to say that physicists have no business asking questions in biology, or vice versa. Biology is built on the laws of physics and chemistry, even if the exact details of how are still being puzzled out today. And questions that my dad put to me, as part of his own research, often had me questioning both physics and biology. How does a cell know what organ to build a piece of? What biochemical signals lead to the evolution of our own sensory organs, like ears or eyes? How does higher level order arise from molecule level decisions?

I enjoyed discussing these questions with him, and asking my own about the chemistry of the nanomaterials I studied, and their current and possible future biological applications. But the last big biological questions my dad asked ended up being about cancer, a scientific issue that has absorbed the careers of many researchers. Colon cancer took my father’s life last year, and when I have a question about biology, I can no longer call him to see if he’s thought about it before. At his memorial service, many friends commented how much they enjoyed talking science with my dad, whether they had a scientific background or not. He enjoyed discussing and debating these topics with anyone, even if and sometimes especially if they had a vastly different perspective to his own. But I think science would get a little bit further if we had more scientists like my father, or like Erwin Schrödinger, who were willing to cross disciplinary boundaries, admit what they don’t know, and see where they can go from here.

My scientific colleagues may find this to be a very personal response to a scientific matter. But Schrödinger himself dedicated What Is Life? to the memory of his parents. We are all searching for answers together, inspired by those who have come before, and certain to be surprised by what comes next.

Advertisements

When Your Science Hero is Problematic

We all have heroes, people we look up to and whose achievements spur us on to do our own personal best. And, especially in this era where women are saying #metoo and finally being heard, we have probably all had the experience of finding out that one of our heroes has done some less than heroic things. This has come up a lot for me recently with the deaths of some very famous scientists and science fiction writers, men I greatly admired when I was a kid, who I’m now discovering were frequently awful to women (i.e., people like me).

I think this happens more than usual in science, a traditionally male-dominated field where a culture of elitism and privilege has been embedded for a long time. And it’s tempting to view things in black and white: either my hero is amazing for their achievements or they are garbage for their behaviour. We know in our personal lives that people are multi-faceted, yet we’re slow to allow public figures that same understanding. If a famous male scientist discovers lots of things, and is a great collaborator with other men but acts differently toward women, consciously or unconsciously, how are we meant to think about that?

As a physicist who loves to write, I’ve had to consider this before, because one of my early science heroes was Richard Feynman. Feynman was a brilliant theoretical physicist, a Nobel laureate, and worked on the Manhattan project building the atomic bomb in my hometown of Los Alamos. He also wrote a series of very enjoyable popular science books, which were also quite personal and effortlessly engaging. A quote from an interview that immediately stuck with me:

Omni: As we came back to the office, you stopped to discuss a lecture on color vision you’ll be giving. That’s pretty far from fundamental physics, isn’t it? Wouldn’t a physiologist say you were ‘poaching’?

Feynman: Physiology? It has to be physiology? Look, give me a little time and I’ll give a lecture on anything in physiology. I’d be delighted to study it and find out all about it, because I can guarantee you it would be very interesting. I don’t know anything, but I do know that everything is interesting if you go into it deeply enough.

As someone who is omnivorous about knowledge, I found that quote resonated with me deeply. Science is fascinating because it shows us how the world works, how things which might appear separate are deeply connected, and the overlapping intricacies behind the everyday we take for granted. I now do my research on nanoscience, a strongly interdisciplinary field that draws from chemistry, electrical engineering, materials science, and plenty more beyond the physics that I got my degrees in. I admired Feynman for not letting other people dictate the questions he could ask, for being a physicist in what felt like a subversive and wide-ranging way. He was also famous for his sense of humour, his love of non-scientific things like playing bongos, and for generally not being as formal and rigid about anything as physicists tend to be.

The author having a Feynman bongo moment at the No-Ball Prizes. Photo by Ian Bowkett.

Of course, if you read Feynman’s books you’ll also find less inspiring stories, if you are a female scientist. He writes about doing his calculations in a Hooters, negging women in bars, and pretending to be an undergraduate to pick up grad students’ wives. This is less subversive, and more what we might generously call ‘of a time’. Feynman did plenty to promote the status of women in physics, encouraging his own sister to study it and eventually get a PhD. But reading through these differing accounts of his behaviour, female physicists are left wondering whether this great man of science would have seen them as colleagues and equals, or as prey.

I still find a lot in Feynman to look up to, as a physicist who did amazing work but cared about communication and didn’t give in to pressure to conform. However I can still acknowledge the women he mistreated, or perhaps even drove out of the field which is a terrible loss to science. He had a complexity to him, and my initial hero-worship of Feynman when I was younger has been replaced by equally complex feelings, of respect for his scientific and communication work alongside frustration at his mistreatment of women. But there’s no such thing as a perfect hero anyway, and if I needed one in physics, I might be waiting a long time. We have many historical women in physics to look up to, like Lise Meitner or Emmy Noether, and yet often these women were denied resources and opportunities that their male colleagues had, which can make them feel like amazing but also tragic figures. I would hope that women working in science today can be heroic without the tragedy.

Perhaps looking for heroes in science is a fundamentally flawed endeavor. Science is at its heart collaborative, and the sheer scope of human knowledge means that it is impossible for one person, toiling alone, to conquer it all. We must talk to each other, work together, and build on existing work, as famously stated by Isaac Newton: “If I have seen further it is by standing on the shoulders of giants.” The great man theory is as flawed when it comes to science as it is when it comes to history. We all seek out role models, but we must recognize that they worked with others, seen and unseen, and that science is a societal effort and not the work of a lone genius.

While Feynman is long gone, there are other scientists still living, still contributing, and still behaving badly. It’s important that we not let them off the hook. Feynman lived decades ago, and certainly the standards of behaviour were different then, but today’s harassers and discriminators have no such excuse. If science is truly a collaborative effort, then it loses strength every time a person is pushed out of science by harassment. We can have complicated feelings about prominent scientists of the past, but there are a lot of people working in science today who are doing it right, and can serve as inspirations.

For example, tomorrow is the first ever LGBT STEM day, being celebrated with events around the world. Our Irish LGBT STEM network, House of STEM, has done so much to organise and promote this event, and founder Shaun O’Boyle explains why it’s desperately needed here:

The past is full of problematic yet successful scientists. Yet I’m hopeful that the future will have a broader array of amazing scientists, working together, who are also amazing people.

Threading a Nano-needle

One of the most exciting things about working in nanoscience is the incredible level of precision with which we can probe the world around us. This includes not just the physical world but also the biological world, which is a lot messier than most physicists are comfortable with!

There is currently intense interest in sequencing DNA via translocation through a nanopore, like threading a needle with the molecule that contains instructions for building life. Protein nanopores are the basis of new technology for DNA sequencing that made the news recently, costing only $1000 for full DNA sequencing with a palm-sized device from Oxford Nanopore. The protein nanopore is pictured in the image below, with DNA unspooling to pass through the pore.

But these nanopores can also be created in silicon, graphene or other thin materials. These solid state nanopores emulate the very small biological pores which can be found in the lipid bilayer around cells and their nuclei. Macroelectrodes in solution on either side of a solid state nanopore drive an ionic current in the carrier solution through the nanopore. As the DNA passes through the nanopore, it physically blocks the ionic current through the nanopore, allowing detection of translocation events. Additional electrodes can be added across the nanopore to enhance sensitivity to DNA. While research in this area is ongoing, it is thought that noise in the electrical signal through the nanopore can eventually be lowered—by applying coatings, slowing translocation speeds and improving fabrication techniques—to enable base pair sensitivity for DNA sequencing. Using solid state nanopores for sequencing could lead to more reliability and lower costs than protein sequencing, and is a major research area of the Drndić group at UPenn, the group I worked in for my PhD!

To me, nanopore sequencing is an amazing example of how direct electrical interaction with nanostructures can yield important information about not just the world around us, but our own place in it.

Why Use Comedy to Communicate Science?

Comedy is a tool for change. It changes how people think about the world we live in, about complex ideas, and about each other. In this talk from TEDxTUM this winter, I explain why comedy is a great way to communicate science, to foster new ways of thinking, and even to show our humanity during the toughest times.

I’m very proud of this talk and I hope you enjoy it. It’s dedicated to my father.

Science Communication: Just Do Everything

Practice makes perfect, with science communication as with most other things. The more you hone your skills, especially in front of an audience, the more you learn what works and what doesn’t. And this is the best time of year if you are looking for science communication opportunities in Ireland.

The author at Bright Club Galway, photo courtesy Steve Cross.

Right now all of the following opportunities are open for submissions:

  • Bright Club: The one and only research/comedy variety night, get in touch for upcoming dates across Ireland.
  • Soapbox Science: Science takes to the streets, highlighting women working in STEM fields. Apply online by 23rd February.
  • Pint of Science: Informal science talks in the pub, apply here by 26th February.
  • Flame Challenge: Written/video competition, this year to explain climate to an 11 year old. Apply by 2nd March here.
  • Famelab: 3 minute talks on any scientific topic, apply to regional heats or online by 4th March.

Some of these events are recurring and some are once a year, and there’s also more competitions like I’m A Scientist, Get Me Out of Here which occurs in the fall. You may feel more drawn to some of these formats than others, but in my view any practice is valuable. The first couple years I started to do scicomm talks in earnest, I did ALL the events listed above. Except since Bright Club didn’t yet exist in Ireland, I had to start it myself.

It turned out pretty well, and I’ve gotten lots more opportunities and even career advancement since. So take a risk, register for one of the events above. Or all of them. You never know.

The Far Northland

Over the summer I spent some time on a ship at the end of the world, as part of a science/art residency in the Arctic Circle. It was such a unique experience, and a visceral reminder of the many ways we are changing the world we live in. But I also took some videos while I was there, the first time I have marked an experience this way. While I love to take photos and find them very evocative, I was surprised how videos can bring back the immediacy of an experience like this, a reminder of the power of video for scientific communication too.

Now that I’ve finished processing them, here are all of my video missives from the Arctic, so that you can share the experience with me. And, if you are an artist or scientist and think this trip sounded amazing, you can apply for the same program here to go next year!

Where Do Scientists Come From?

Some people want to be scientists from the time they are children. Some people are influenced by scientists in movies and TV, or hear about famous scientists and want to be like them. Some people grow up with scientific role models, and some only come to science later in life, with lots of other experience under their belt.

But when I ask this question in talks, where do scientists come from, this is the photo I always show:

That’s me and my dad, somewhere between Oregon and Tennessee. He was a biochemist, but more importantly he was one of those rare people who does not lose their childlike curiosity about everything as they become an adult. My dad wanted to know how everything worked. How does a cell know to build part of a liver instead of a blood vessel? How do neurons build something whose topology leads to learning and memory? How did the building blocks of life first come together? How did the universe begin?

I lost my dad this week. I still have an unread email from him, a link to an article about the inflationary universe and the new things we are learning about it.

One of the things we used to talk about too was the importance of knowing your audience. My dad loved science but he didn’t only want to talk to other scientists, or to only discuss biology with biologists. He thought long and hard about how to explain things, talking and writing all the time about science. But he also knew that discussing an interesting topic with someone who has a different perspective than you so often leads to new insights and ideas. Talking about science shouldn’t be one way, it really has to be a dialogue to mean anything to either side.

I learned a lot more from my dad than just science and how to communicate better. But I can say unequivocally that he shaped me into the scientist that I am, and even our jokes back and forth to each other were a huge part of what led me to do science comedy.

Soon I will be going to London to receive the Institute of Physics Mary Somerville Prize, an early career public engagement award. It is dedicated to my dad, whose love of science and the world around us I am proud to carry forward. I will miss him fiercely.